

**ASTRA range** Air operated double diaphragm pumps





Argal manufactures since 1973 horizontal and vertical centrifugal pumps made of thermoplastic and fluoro polymer chemically resistant materials and its design has been always innovative and appreciated worldwide.

The company complies to the quality system ISO 9001:2000 certified by the Swiss association for quality and Management System SQS belonging to the International Certification IQ Network.

Argal with its new air operated double diaphragm pumps "ASTRA" joints the group of the major European manufacturers of such versatile pumps meant for a broad choice of industries and type of liquids ranging from low to high viscosity, neutral or highly corrosive or even edible (food industry).

## PUMPS CONFIGURATION

Pump with reciprocating coaxial chambers with in built valves seats and manifolds located above and below of the chambers (R version, reversible, excluded).

Un balanced air distributor with air spring assisted differential air distributor spool.

Separate pilot spool valve coaxial to the shaft of the diaphragm. (mod. 50C excluded).

Air distributor command reversed at the end of each stroke of the pilot spool valve.

Air flow to diaphragms' pressurisation chambers adjustable. Performance regulation on request from the model 50 and above.

## **OPERATING PRINCIPLE**

Astra pump are double chamber volumetric pumps.

The diaphragms linked by a common shaft move of alternative motion within coaxial chambers and are displaced by pressurised air alternatively delivered to their rear side by an air distributor such that while one diaphragm draws the fluid into one chamber from a common manifold the other diaphragm pumps the fluid from the opposite chamber in to the other common manifold.

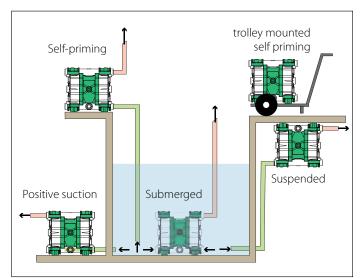
#### SIZES

Depending upon the application we propose different designs for the same pump size aimed to obtain specific benefits like compact dimensions, reduced cost or superior performance.

Currently the range proposed includes the sizes 1/4" - 3/8"- 1/2" - 3/4" - 1" - 11/4" - 11/2" - 2". In the near future we will manufacture the larger sizes 3" and 4".

## MAIN CHARACTERISTICS

- Can run dry.
- Dry lift up to 6 m.
- Operates pneumatically. Doesn't need electrical actuators.
- Stall free pneumatic circuit.
- Easy to install.
- Submersible.
- Lube free.
- Adjustable flow.
- Pumps fluids laden with solids.
- Pumps viscous liquids.
- Pumps liquid with low flash point.




All metallic and plastic standard executions are adequate to operate in environments at risk of explosion classified as "Zone 2" (Series II 3/3GD IIB T 135°C) of European ATEX regulation.

For operations in ATEX areas classified as "Zone 1" (II 2/2gd IIB T 135°C) Argal offers pumps manufactures with conductive parts for all thermoplastic and metallic version.

## INSTALLATION

ASTRA AODD pumps can be installed like here illustrated for the operations of transfer, feeding, circulation, injection, emptying, dosage.



## In this catalog:

| Introductionpage 2-3                                   |
|--------------------------------------------------------|
| DDA 25R – 38R – 50R (1/4" - 3/8" - 1/2")page 4-5       |
| DDA 50C (1/2")page 6-7                                 |
| Presentation of pumps "Normal" and "Progress".page 8-9 |
| DDA 50 – 75 – 100C (1/2" - 3/4" - 1")page 10-11        |
| DDA 100 – 125 (1" - 11/4")page 12-13                   |
| DDA 150 – 200 (11/2" - 2")page 14-15                   |
| Presentation ASTRAFOODpage 16-17                       |
| ASTRAFOOD - DFA 75 – 125page 18                        |
| ASTRAFOOD - DFA 150 – 200page 19                       |
| Pulsation dampeners SELENEpage 20-21                   |
| General technical notespage 22-23                      |
| Main application sectorspage 24                        |
|                                                        |

table 1

table 2

## MATERIAL OF CONSTRUCTION

Argals' AODD pumps are manufactured either with thermoplastic or metallic materials.

Available thermoplastic materials are glass fibre reinforced polypropylene (GFR PP), and carbon fibre filled polyvinylidene fuoride (CFF PVDF); construction with pure PVDF is available for a restricted range of models.

PP: resists to aqueous solutions of acids alkalis, salts and several organic solvents; is not resistant to concentrated oxidant acids.

PVDF: resists to acids, saline solutions, aromatics hydrocarbons, aliphatic and chlorinates, alcohols and halogens.

Metallic pumps are made of Aluminium e Stainless Steel SUS 316 for industrial use or of electro polished Stainless Steel SUS 316 with clamp connections and compliant to FDA regulations for food application.

#### CODES AND APPLICATIONS

| Code | Pump case material | Characteristics Indications Applications                                        |  |  |  |  |  |  |  |
|------|--------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| WR   | GFR - PP           | Good chemical resistance (diluted acids ) ; max. temperature 75°C               |  |  |  |  |  |  |  |
| FC   | CFF-PVDF           | Excellent chemical resistance (concentrated acids); max. temperature 95°C       |  |  |  |  |  |  |  |
| DF   | PVDF               | Excellent chemical resistance;                                                  |  |  |  |  |  |  |  |
| SS   | SUS 316            | Strong alkali (hydroxides); high Viscosity high temperaturemax.150°C            |  |  |  |  |  |  |  |
| AL   | Aluminum           | Paint, Solvents, various hydrocarbons; low replacement cost in case of abrasion |  |  |  |  |  |  |  |
| SP   | SUS 316 polished   | Auxiliary services in Food Pharmaceutics and Cosmetic Industries                |  |  |  |  |  |  |  |

#### CODE AND APPLICATIONS OF WETTED PARTS

| Code   | Diaphragm   | Balls   | Ball seats       | Application                                                                    |  |  |  |  |  |  |
|--------|-------------|---------|------------------|--------------------------------------------------------------------------------|--|--|--|--|--|--|
| HTDZ   | PTFE        | EPDM    | Polyethylene     | Abrasion and average chemical resistance                                       |  |  |  |  |  |  |
| MTZ    | Santoprene® | PTFE    | Polyethylene     | Depuration (economical alternative to execution 13)                            |  |  |  |  |  |  |
| HTTZ   | PTFE        | PTFE    | Polyethylene     | Standard version; Depuration, filtered oil; low noise level)                   |  |  |  |  |  |  |
| HT S Z | PTFE        | SUS 316 | Polyethylene     | Depuration (As execution 13 but with heavy ball)                               |  |  |  |  |  |  |
| MSZ    | Santoprene® | SUS 316 | Polyethylene     | Depuration (economical alternative to 13, mild liquids with presence of solid) |  |  |  |  |  |  |
| MDS    | Santoprene® | EPDM    | SUS 316          | Depuration (economical alternative to 13 in presence of solids)                |  |  |  |  |  |  |
| HT S S | PTFE        | SUS 316 | SUS 316          | Dense fluids; Crude Oil; best dry lift                                         |  |  |  |  |  |  |
| M S S  | Santoprene® | SUS 316 | SUS 316          | Dense fluids                                                                   |  |  |  |  |  |  |
| HT T K | PTFE        | PTFE    | E-CTFE           | Excellent chemical resistance; ultra Pure liquids                              |  |  |  |  |  |  |
| HT T S | PTFE        | PTFE    | SUS 316          | Solvents; Inks; paint; enamels                                                 |  |  |  |  |  |  |
| HTT A  | PTFE        | PTFE    | Aluminum         | Economical for pure hydrocarbons                                               |  |  |  |  |  |  |
| HTA    | Keyflex®    | PTFE    | Aluminum         | Economical for dirty hydrocarbons                                              |  |  |  |  |  |  |
| HT T S | PTFE        | PTFE    | SUS 316 polished | Auxiliary services food and / cosmetic sector                                  |  |  |  |  |  |  |
| HT S S | PTFE        | SS 316  | SUS 316 polished | Auxiliary services food sector / cosmetics; high Viscosity                     |  |  |  |  |  |  |

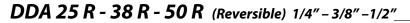
#### Thermoplastic diaphragms

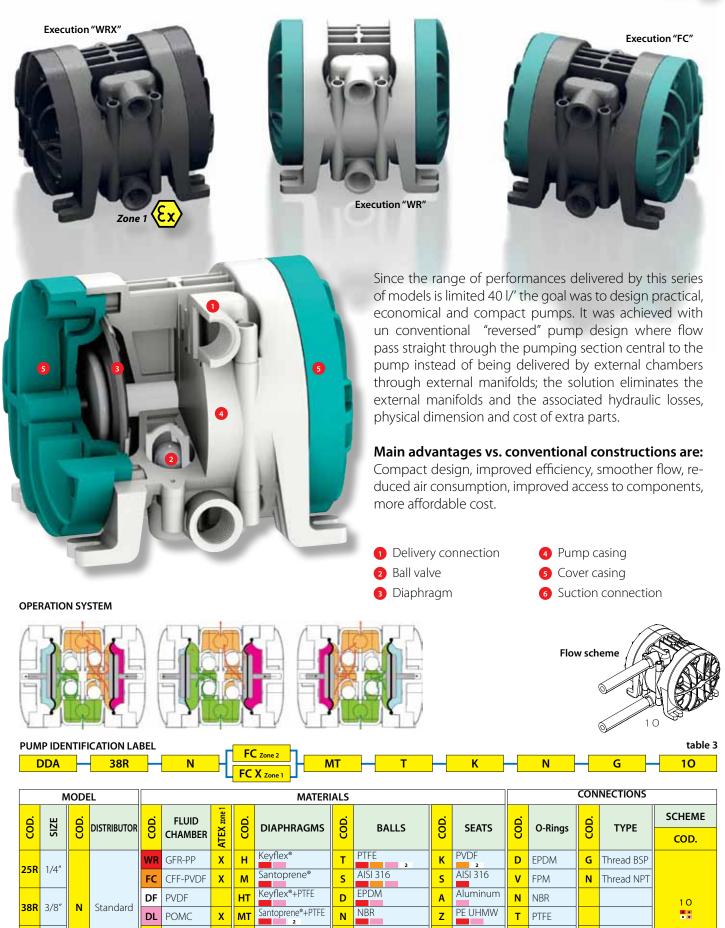
Offer high chemical resistance, abrasion resistance and long life; are made of Keyflex<sup>®</sup>, Santoprene<sup>®</sup> and Polyurethane; the broad range of application these materials are adequate to, eases the choice of the correct pump execution.

#### **Elastomeric diaphragms**

Deploy blend of rubbers embedding nylon made reinforcing mesh designed to increase their mechanical resistance. Most common elastomeric rubbers are nitrilic (NBR) and ethylene propylene diene monomer (EPDM) based. On request we deliver also fluorinated rubber FKM diaphragms (e.g.: Viton<sup>®</sup>).

#### PTFE diaphragms


Il PTFE is the fluoro-polymer material with the broadest chemical resistance.


Our PTFE diaphragms are manufactured with a special process to be flexible and resistant.

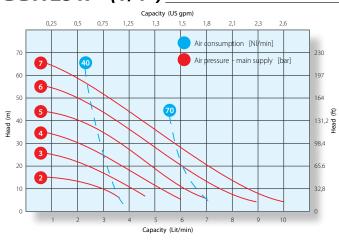
In our ASTRA pumps the PTFE diaphragm is always backed up by a rear diaphragm of thermoplastic rubber which increases the resistance and its service life.

Keyflex® e Viton® are a trade mark registered by Du Pont and Santoprene® is registered by Exxon Mobil

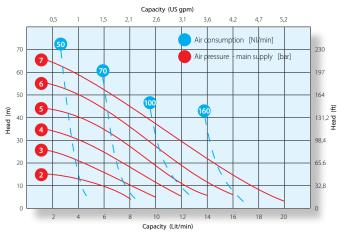




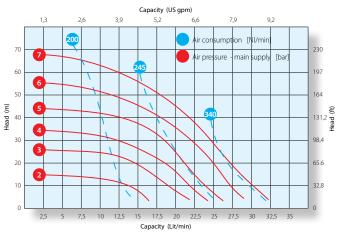


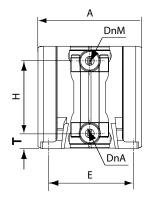

Zone 2 🔀

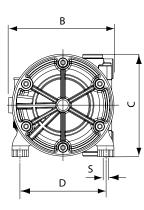
Only ATEX Zone 2 - Standard connections scheme


50R 1/2"

ASTRA - AODD Pumps Range


# DDA 25 R (1/4")





#### DDA 38 R (3/8")



#### DDA 50 R (1/2")



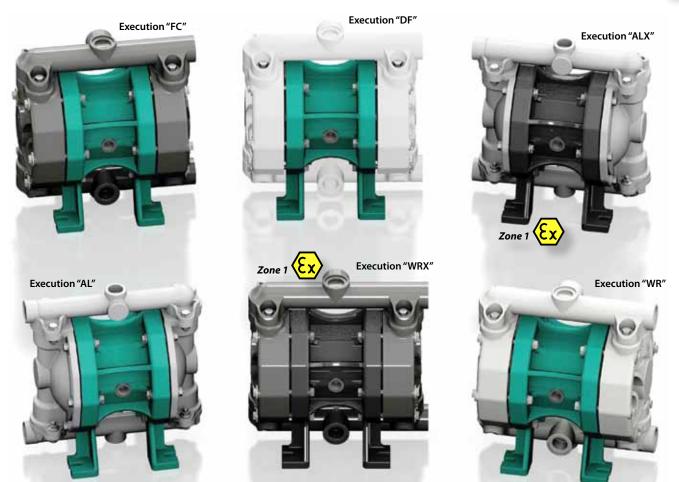




|                                                 | table 4  |  |  |  |  |  |  |  |  |
|-------------------------------------------------|----------|--|--|--|--|--|--|--|--|
| Technical Data                                  |          |  |  |  |  |  |  |  |  |
| Max. capacity                                   | 10 l/min |  |  |  |  |  |  |  |  |
| Max. head                                       | 70 m     |  |  |  |  |  |  |  |  |
| Air inlet                                       | 1/4" BSP |  |  |  |  |  |  |  |  |
| Suction Lift                                    | 5 m      |  |  |  |  |  |  |  |  |
| Max. solids                                     | 3 mm     |  |  |  |  |  |  |  |  |
| Max. viscosity (positive suction)               | 8.000 cP |  |  |  |  |  |  |  |  |
| Pump Materials                                  |          |  |  |  |  |  |  |  |  |
| WR - Polypropylene + glass fibre (GFR-PP)       |          |  |  |  |  |  |  |  |  |
| FC - Polyvinylidene fluoride + carbon fibre (CF | F-PVDF)  |  |  |  |  |  |  |  |  |
| DF - Polyvinylidene fluoride (PVDF)             |          |  |  |  |  |  |  |  |  |
| DL - Polyoxymethylene (POMc)                    |          |  |  |  |  |  |  |  |  |

|                                                 | table 5  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------|----------|--|--|--|--|--|--|--|--|--|
| Technical Data                                  |          |  |  |  |  |  |  |  |  |  |
| Max. capacity                                   | 20 l/min |  |  |  |  |  |  |  |  |  |
| Max. head                                       | 70 m     |  |  |  |  |  |  |  |  |  |
| Air inlet                                       | 1/4" BSP |  |  |  |  |  |  |  |  |  |
| Suction lift                                    | 5 m      |  |  |  |  |  |  |  |  |  |
| Max. solids                                     | 3 mm     |  |  |  |  |  |  |  |  |  |
| Max. viscosity (positive suction)               | 8.000 cP |  |  |  |  |  |  |  |  |  |
| Pump Materials                                  |          |  |  |  |  |  |  |  |  |  |
| WR - Polypropylene + glass fibre (GFR-PP)       |          |  |  |  |  |  |  |  |  |  |
| FC - Polyvinylidene fluoride + carbon fibre (CF | F-PVDF)  |  |  |  |  |  |  |  |  |  |
| DF - Polyvinylidene fluoride (PVDF)             |          |  |  |  |  |  |  |  |  |  |
| DL - Polyoxymethylene (POMc)                    |          |  |  |  |  |  |  |  |  |  |

|                                                 | table 6  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------|----------|--|--|--|--|--|--|--|--|--|
| Technical Data                                  |          |  |  |  |  |  |  |  |  |  |
| Max. capacity                                   | 32 l/min |  |  |  |  |  |  |  |  |  |
| Max. head                                       | 70 m     |  |  |  |  |  |  |  |  |  |
| Air inlet                                       | 1/4" BSP |  |  |  |  |  |  |  |  |  |
| Suction lift                                    | 5 m      |  |  |  |  |  |  |  |  |  |
| Max. solids                                     | 3 mm     |  |  |  |  |  |  |  |  |  |
| Max. viscosity (positive suction)               | 8.000 cP |  |  |  |  |  |  |  |  |  |
| Pump Materials                                  |          |  |  |  |  |  |  |  |  |  |
| WR - Polypropylene + glass fibre (GFR-PP)       |          |  |  |  |  |  |  |  |  |  |
| FC - Polyvinylidene fluoride + carbon fibre (CF | F-PVDF)  |  |  |  |  |  |  |  |  |  |
| DF - Polyvinylidene fluoride (PVDF)             |          |  |  |  |  |  |  |  |  |  |
| DL - Polyoxymethylene (POMc)                    |          |  |  |  |  |  |  |  |  |  |


#### DIMENSIONS table 7 Plastic Metal WR-DL FC-DF AL SS 25R 38R 50R [mm] 5R 38R 50R 155 155 А 135 135 В С 125 125 D 99 99 112 112 Ε н 93 93 na na S 6 6 Т 16,5 16,5 Peso [kg] 1,5 1 Connections Threads **DnA = DnM** 1/4" 3/8" 1/2" 1/4" 3/8" 1/2"



5

ADC

# **DDA 50 C** (Compact) 1/2"\_

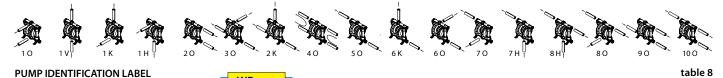


This pump size is in large market demand and Argal wants to offer a perfectly balanced solution with a modern pump complete and characterised by high quality and top performances.

## PUMP CONFIGURATION

The pumping casings are bolted to the central casing and to the manifolds by stainless steel bolts to assure reliable operation free from losses of pressurized air or fluids.

Valves are integrated in the liquids' chambers to improve


WR Zone 2

dry lift.

The distributor is unbalanced with air spring assisted differential air distributor spool and command spool integrated in the distributor spool.

Zone 2

The original design of the distributor optimizes the performances of the pumps and contributes to the reduction of air consumption. The pump operates also with minimal pneumatic pressure supply. Flow and speed vary adjusting the air flow while the head depends from the pressure of the air supply.



|      | DDA 50C N G 20              |     |             |      |           |          |      |                  |      |             |      |           |      |         |          |            |           |
|------|-----------------------------|-----|-------------|------|-----------|----------|------|------------------|------|-------------|------|-----------|------|---------|----------|------------|-----------|
|      | MODEL MATERIALS CONNECTIONS |     |             |      |           |          |      |                  |      |             |      |           |      |         |          |            |           |
| cob. | COD.<br>attacchi            |     | DISTRIBUTOR | COD. | FLUID     | < zone 1 | cod. | DIAPHRAGMS       | cod. | BALLS       | cod. | SEATS     | cod. | O-Rings | cod.     | ТҮРЕ       | SCHEME    |
| Ö    | atta                        | COD |             | B    | CHAMBER   | ATEX     | U    | DIAFTIKAGMIS     | Ö    | DALLJ       | Ŭ    | SEATS     | Ŭ    | C mings | <b>U</b> |            | COD.      |
|      |                             |     |             | WR   | GFR-PP    | х        | н    | Keyflex®         | т    | PTFE 2      | к    | PVDF      | D    | EPDM    | G        | Thread BSP | 10 1V 7H  |
|      |                             |     |             | FC   | CFF-PVDF  | х        | м    | Santoprene®      | S    | AISI 316 SS | S    | AISI 316  | v    | FKM     | N        | Thread NPT | 1K 1H 8H  |
| 500  | 1/2″                        | N   | Ctandard    | DF   | PVDF      |          | D    | EPDM             | D    | EPDM        | Α    | Alluminum | Ν    | NBR     | Т        | Thread (1) | 20 30 80  |
| 500  | 1/2                         | IN  | Standard    | AL   | Alluminum | х        | Ν    | NBR              | Ν    | NBR         | Z    | PE UHMW   | т    | PTFE    |          |            | 3K 40 90  |
|      |                             |     |             | SS   | AISI 316  | Х        | HT   | Keyflex®+PTFE    |      |             | Р    | PP        |      |         |          |            | 50 6K 100 |
|      |                             |     |             |      |           |          | MT   | Santoprene®+PTFE |      |             |      |           |      |         |          |            | 60 70     |

Only ATEX Zone 2 - (1) Available on request - Standard connections scheme

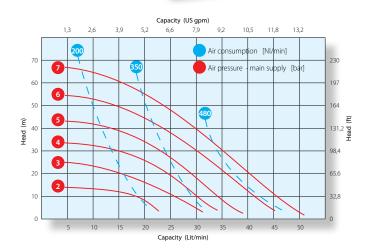
# DDA 50 C (1/2")

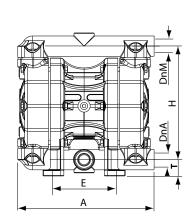


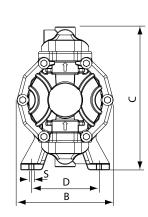
3 Diaphragm

- 4 Air pneumatic distrubutor

- 8 Suction manifold


## Major applications:


Ink for flexographic and traditional printing. Painting application and appliances. Industrial washing and de greasing. Fluid transfer from drums. Transfer of restricted quantities of fluids.


#### table 9

7

Zone 2







| Technical Dat                           | ta              |
|-----------------------------------------|-----------------|
| Max. capacity                           | 50 l/min        |
| Max. head                               | 70 m            |
| Air Inlet                               | 1/4" BSP        |
| Suction Lift                            | 5 m             |
| Solids pass                             | 3 mm            |
| Max. viscosity (positive suction)       | 10.000 cP       |
| Pump Materia                            | ıls             |
| WR - Polypropylene + glass fibre (GFR-  | PP)             |
| FC - Polyvinylidene fluoride + carbon f | ibre (CFF-PVDF) |
| DF - Polyvinylidene fluoride (PVDF)     |                 |
| AL - Aluminum                           |                 |
| SS - SUS 316                            |                 |

#### table 10

|             | Plas | stic       | Metal |                   |  |  |  |  |
|-------------|------|------------|-------|-------------------|--|--|--|--|
| [mm]        | WR   | FC - DF    | AL    | SS                |  |  |  |  |
| А           | 222  | 222        | 225   | 225               |  |  |  |  |
| В           | 156  | 156        | 156   | 156<br>230<br>110 |  |  |  |  |
| С           | 233  | 233        | 230   |                   |  |  |  |  |
| D           | 110  | 110        | 110   |                   |  |  |  |  |
| E           | 110  | 110        | 110   | 110<br>183        |  |  |  |  |
| н           | 185  | 185        | 183   |                   |  |  |  |  |
| S           | 7    | 7          | 7     | 7                 |  |  |  |  |
| Т           | 26,5 | 26,5       | 25,5  | 25,5              |  |  |  |  |
| Weight [kg] | 4    | 4,5        | 5     | 6                 |  |  |  |  |
| Connections |      | Threads (1 | )     |                   |  |  |  |  |
| DnA = DnM   | 1/2″ | 1/2″       | 1/2″  | 1/2″              |  |  |  |  |

# DDA 50 - 75 - 100 C - 100 - 125 - 150 - 200

The range of pumps with sizes from 1/2" to 2" offers increased flow compared to common pumps of the same size. This translates in economical advantage for a smaller and less expensive pump can be applied to deliver same performances or in a technical advantage for by same size same performances are delivered at a lesser speed and consequent reduced mechanical stress and wear of all parts. For mentioned reasons the user enjoys a longer operational life, lesser LCC (Life Cycle Cost) and devices with less vibration and attenuated noise compared to conventional pumps.

## PNEUMATIC DISTRIBUTOR SYSTEM ARGAL

is made up by:

- Unbalanced air distributor system with pneumatic air assistance.
- Pilot spool coaxial to the rod connecting the diaphragms.
- In built by directional air flow regulator to diaphragms' air chambers.
- Pneumatic signal's management system.

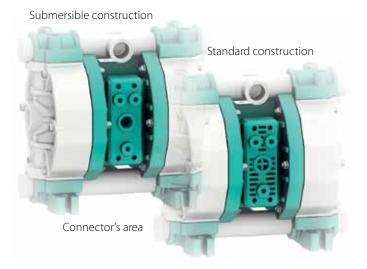
#### **DESCRIPTION OF THE SYSTEM**

The unbalanced air distributor, combined with the command valve realises a system with intrinsic stall free characteristics.

In details the pilot spool supplies or cuts off the pressurised air command to the distributor only at the end of each of its strokes.

This arrangement prevents the pilot spool to generate ambiguous commands even at very low pumping speed or low air supply pressures or even with a shut off delivery valve, which typically happens to less sophisticate distributors which in such conditions easily stall.

#### PUMP CONFIGURATION


ARGAL AODD pumps are available in two version **N**ormal and **P**rogress. Both version are designed an pre set for following options:

- "Two in one" delivery manifold;
- Detection of cycles with normalised probe;
- Extra low pressure operation with actuation circuit of diaphragms independent from pilot command circuit;
- Pneumatic signals in response of the end of run positions of the diaphragms;
- Adaptors to feed air chambers from external source.
- Submersible configuration.

#### Short description.

It is possible to feed the actuation circuit and the pilot circuit of the distributor with air at different pressures; this allows to deliver the fluid at very low pressures variable at will and always controllable from the outside of the pump without the risk to stall the distributor because of insufficient air command pressure. The actuation circuit (that distributes pressurised air in the chamber of the diaphragms) fed with air at low pressure, offers performances ideal to fine dose fluids and supply devices operating at low fluid pressure (as spraying guns).

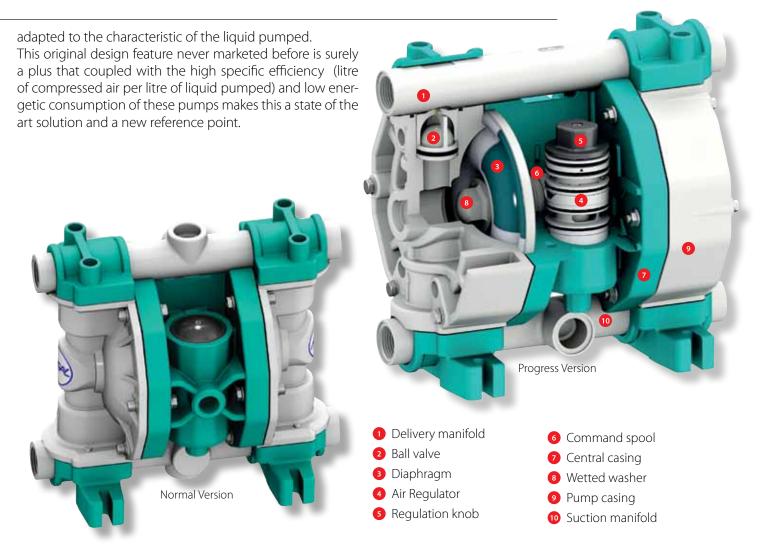
Other connections provide pneumatic signals in correspondence of the extreme positions of the diaphragms. These connections fitted with simple adaptors ease the installation of pneumatic or electric cycle counting devices also adequate to ATEX classified areas if provided with adequate electrical transducers. All pumps are pre set to these functions by connections located in a dedicate space close by to the air distributors' exhaust cover.



## **PROGRESS VERSION**

All the pump models can be fitted with an integrated control dial distribution valve easily adjustable to set the device on pre set positions optimised to pump problematic fluids as liquids laden with solids or very viscous.

This in built regulator device is valuable for, either at the installation or at later times allows, by selecting the best set up, to fine tune the pump to the specific application thus reducing significantly the air consumption of the pump and its overall efficiency and flexibility.


## PADS: THE NEW AIR DISTRIBUTOR AND REGULATOR

To enrich this new series of Argal pumps with new features we introduced in its pneumatic distributor a bidirectional valve; this valve controls the airflow during the pressurisation and de pressurisation of the chamber behind the diaphragms.

Conventional AODD pumps deploy only one air valve applied along the air supply line of the pump (or built in the pump) to control the pressurisation of the air chambers while the release of the pressurised air once stroke is concluded is not controlled and the discharge is rather violent and transmits to the liquid pumped pulsations.

The by directional valve integrated in the central casing of Argal pumps effectively controls both pressurisation and de pressurisation of the air chambers: the flow of the liquid delivered is still impulsive but amplitude of pulsations are significantly smaller and pump operations are easier to be

ASTRA - AODD Pumps Range



## OPTIONALS Batch dosing system.

Pneumatic cycle counter contained in a waterproof box actuates an air operated double diaphragm pump for a pre settable number of cycles; simple, economical and effective device that coupled to an air operated double diaphragm delivers a full pneumatic batch dosing system.

## Electronic batch dosing system.

Electronic cycle counter instead of pneumatic compliant to ATEX regulation. Cycle counter with on/off switch output. Compact transducer to be installed at the foreseen pumps' connector delivers to cycle counter on /off signal.

## Electric cycle counter

Compact transducer installable on a foreseen connection of the pump delivers on/off switch signal at any pumping cycle; this signal can be utilized as input for a remote cycle counter device that coupled to the air operated double diaphragm pump may constitute a simple and effective dosing system.

## Electric cycle counter.

Electric cycle counter for classified areas. Delivers the same functions of the on/off cycle counter dosing system above described but the transducer is an ATEX classified electronic probe to be installed on the pump by a dedicated adaptor. **Pulsation dampener** (see page 22, 23).









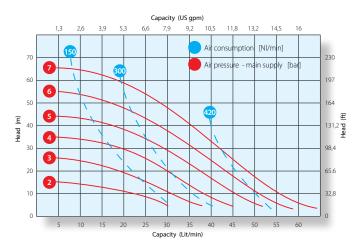
## ACCESSORIES

Air regulator kit. Pneumantic and electric control valves. Connector flange kit. Shock adsorber kit for pumps. Flexible connections kit. Valve adaptors made of pp, pvdf, inox. Stainless steel trolley for pumps.

# DDA 50 - 75 - 100 C 1/2" - 3/4" 1"\_

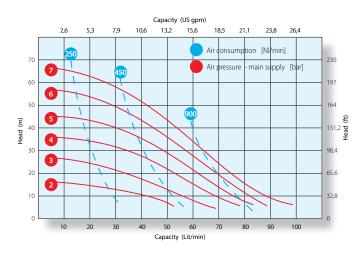


Zone 2

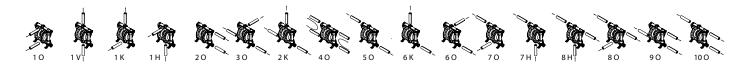

|                                  |     |     |   |   |   | table 11 |
|----------------------------------|-----|-----|---|---|---|----------|
| DDA 50 N WR X zone 2 WR X zone 2 | M - | т — | P | N | G | 20       |

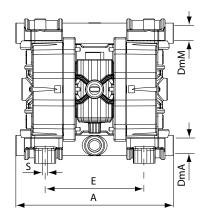
|          | MODEL  |      |             |    | MATERIALS |      |    |                  |   |             |             |             |             | CONNECTIONS |       |            |        |            |      |       |      |       |      |         |      |      |      |    |
|----------|--------|------|-------------|----|-----------|------|----|------------------|---|-------------|-------------|-------------|-------------|-------------|-------|------------|--------|------------|------|-------|------|-------|------|---------|------|------|------|----|
| coD.     | SIZE   | COD. | DISTRIBUTOR |    |           |      |    |                  |   | DISTRIBUTOR | DISTRIBUTOR | DISTRIBUTOR | DISTRIBUTOR | COD.        | FLUID | X zone 1   | COD.   | DIAPHRAGMS | COD. | BALLS | COD. | SEATS | cod. | O-Rings | cob. | ТҮРЕ | SCHE | ME |
| Ŭ        | S      |      |             | B  | CHAMBER   | АТЕХ | Ŭ  |                  | Ŭ |             | Ŭ           |             | Ŭ           | •           | Ŭ     |            | COD    |            |      |       |      |       |      |         |      |      |      |    |
| 50       | 1./2// |      |             | WR | GFR-PP    | Х    | н  | Keyflex®         | т | PTFE 2      | К           | PVDF        | D           | EPDM        | G     | Thread BSP | 10 10  | 7 H        |      |       |      |       |      |         |      |      |      |    |
| 50       | 1/2″   | Ν    | Standard    | FC | CFF-PVDF  | Х    | м  | Santoprene®      | s | AISI 316 SS | S           | AISI 316    | v           | FKM         | N     | Thread NPT | 1K 1H  | 8 H        |      |       |      |       |      |         |      |      |      |    |
| 75       | 2/4"   |      |             | DF | PVDF      |      | D  | EPDM             | D | EPDM        | Α           | Alluminum   | Ν           | NBR         | Т     | Thread (1) | 20 30  | 80         |      |       |      |       |      |         |      |      |      |    |
|          | 3/4″   |      |             | AL | Alluminum | Х    | Ν  | NBR              | Ν | NBR         | Z           | PE UHMW     | т           | PTFE        |       |            | 3K 40  | 90         |      |       |      |       |      |         |      |      |      |    |
| 100      | 1″     | Р    | Progress    | SS | AISI 316  | Х    | HT | Keyflex*+PTFE    |   |             |             |             |             |             |       |            | 50 6 K | 10 0       |      |       |      |       |      |         |      |      |      |    |
| 100<br>C | '      |      |             |    |           |      | МТ | Santoprene®+PTFE |   |             |             |             |             |             |       |            | 60 70  |            |      |       |      |       |      |         |      |      |      |    |

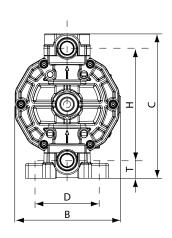
2 Only ATEX Zone 2 - (1) Available on request - • Standard connections scheme


ASTRA - AODD Pumps Range ARCAL 11

# DDA 50 (1/2")





| Technical Data                           |                |  |  |  |  |  |  |  |
|------------------------------------------|----------------|--|--|--|--|--|--|--|
| Max. capacity                            | 65 l/min       |  |  |  |  |  |  |  |
| Max. head                                | 70 m           |  |  |  |  |  |  |  |
| Air Inlet                                | 3/8" BSP       |  |  |  |  |  |  |  |
| Suction Lift                             | 6 m            |  |  |  |  |  |  |  |
| Max. Solids                              | 3,5 mm         |  |  |  |  |  |  |  |
| Max. viscosity (positive suction)        | 10.000 cP      |  |  |  |  |  |  |  |
| Pump Materia                             | ls             |  |  |  |  |  |  |  |
| WR - Polypropylene + glass fibre (GFR-I  | PP)            |  |  |  |  |  |  |  |
| FC - Polyvinylidene fluoride + carbon fi | bre (CFF-PVDF) |  |  |  |  |  |  |  |
| DF - Polyvinylidene fluoride (PVDF)      |                |  |  |  |  |  |  |  |
| AL - Aluminum                            |                |  |  |  |  |  |  |  |
| SS - SUS 316                             |                |  |  |  |  |  |  |  |
|                                          |                |  |  |  |  |  |  |  |


# DDA 75 (3/4") DDA 100C (1")\_



| Technical Dat                           | ta              |  |  |  |  |  |  |
|-----------------------------------------|-----------------|--|--|--|--|--|--|
| Max. capacity                           | 100 l/min       |  |  |  |  |  |  |
| Max. head                               | 70 m            |  |  |  |  |  |  |
| Air Inlet                               | 3/8" BSP        |  |  |  |  |  |  |
| Suction Lift                            | 6 m             |  |  |  |  |  |  |
| Max. Solids                             | 3,5 mm          |  |  |  |  |  |  |
| Max. viscosity (positive suction)       | 10.000 cP       |  |  |  |  |  |  |
| Pump Materia                            | als             |  |  |  |  |  |  |
| WR - Polypropylene + glass fibre (GFR-  | PP)             |  |  |  |  |  |  |
| FC - Polyvinylidene fluoride + carbon f | îbre (CFF-PVDF) |  |  |  |  |  |  |
| DF - Polyvinylidene fluoride (PVDF)     |                 |  |  |  |  |  |  |
| AL - Aluminum (not available for 100C)  |                 |  |  |  |  |  |  |
| SS - SUS 316 (not available for 100C)   |                 |  |  |  |  |  |  |







| DIMENSIONS  |        |         |        |       |             |         |         |        | ta   | ble 14 |  |
|-------------|--------|---------|--------|-------|-------------|---------|---------|--------|------|--------|--|
|             |        |         | Pla    | stic  |             |         |         | Ме     | tal  |        |  |
|             |        | WR      |        | F     | C - D       | F       | A       | L      | SS   |        |  |
| [mm]        | 50     | 75      | 100C   | 50    | 75          | 100C    | 50      | 75     | 50   | 75     |  |
| Α           | 26     | 65      | 291    | 26    | 65          | 290     | 26      | 55     | 24   | 17     |  |
| В           | 177    |         |        |       | 177         |         | 17      | 77     | 17   | 77     |  |
| с           | 246    |         |        | 246   |             |         | 24      | 16     | 249  |        |  |
| D           | 110    |         |        | 110   |             |         | 11      | 0      | 89   |        |  |
| E           |        | 167     |        | 167   |             |         | 16      | 57     | 176  |        |  |
| Н           |        | 189     |        | 189   |             |         | 18      | 39     | 185  |        |  |
| S           |        | 9       |        |       | 9           |         |         | 9      | 9    |        |  |
| Т           |        | 30      |        |       | 30          |         | 3       | 0      | 4    | 0      |  |
| Weight [kg] | 6,5    |         |        |       | 7           |         | 7       | 7      | (    | 9      |  |
| Connections |        |         |        |       | Threads (1) |         |         |        |      |        |  |
| DnA = DnM   | 1/2″   | 3/4″    | 1″     | 1/2″  | 3/4″        | 1″      | 1/2″    | 3/4″   | 1/2″ | 3/4″   |  |
| (1)         | ISO-AI | NSI fla | nged c | onnec | tions       | availab | le on r | equest |      |        |  |

## table 13

## **DDA 100 - 125** 1" - 1 1/4"\_

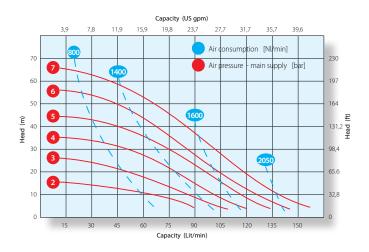


Zone 2

|     |      | Μ    | IODE | L           | MATERIALS |           |          |      |                  |     |          |      | CONNECTIONS |      |         |     |            |        |      |
|-----|------|------|------|-------------|-----------|-----------|----------|------|------------------|-----|----------|------|-------------|------|---------|-----|------------|--------|------|
| 200 |      | SIZE | COD. | DISTRIBUTOR | COD.      | FLUID     | X zone 1 | cod. | DIAPHRAGMS       | oD. | BALLS    | cod. | SEATS       | cod. | O-Rings | oD. | TYPE       | SCHEN  | ΛE   |
| C   |      | S    | Ŭ    |             | Ŭ         | CHAMBER   | ATEX     | Ŭ    |                  | Ŭ   |          | Ŭ    |             | Ŭ    | 5       | Ŭ   |            | COD    |      |
|     |      |      |      |             | WR        | GFR-PP    | х        | н    | Keyflex®         | т   | PTFE 2   | к    | PVDF        | D    | EPDM    | G   | Thread BSP |        |      |
| 10  | 00   | 1″   | Ν    | Standard    | FC        | CFF-PVDF  | х        | м    | Santoprene®      | S   | AISI 316 | S    | AISI 316    | v    | FKM     | Ν   | Thread NPT | 1K 1H  | 8 H  |
|     |      |      |      |             | DF        | PVDF      |          | D    | EPDM             | D   | EPDM     | Α    | Alluminum   | Ν    | NBR     | I   | Thread (1) | 20 30  | 80   |
|     |      |      |      |             | AL        | Alluminum | х        | Ν    | NBR              | Ν   | NBR      | Z    | PE UHMW     | т    | PTFE    |     |            |        |      |
| 12  | 25 1 | 1/4″ | Р    | Progress    | SS        | AISI 316  | Х        | нт   | Keyflex®+PTFE    |     |          |      |             |      |         |     |            | 50 6 K | 10 0 |
|     |      |      |      |             |           |           |          | мт   | Santoprene®+PTFE |     |          |      |             |      |         |     |            | 60 70  |      |

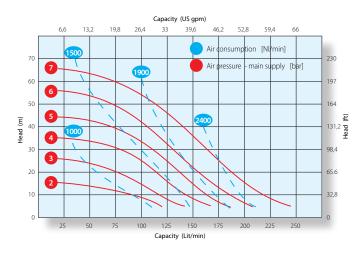
т

Ζ

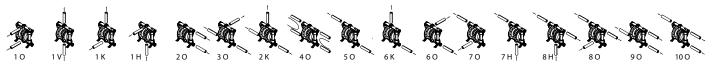

G

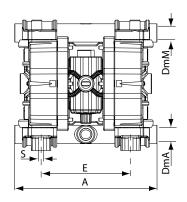
Μ

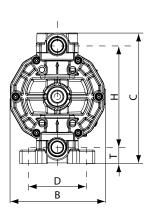
Only ATEX Zone 2 - (1) Available on request - 
Standard connections scheme


ASTRA - AODD Pumps Range ARCAL 13

# DDA 100 (1")\_





| Technical Data                                  |           |  |  |  |  |  |  |  |
|-------------------------------------------------|-----------|--|--|--|--|--|--|--|
| Max. capacity                                   | 165 l/min |  |  |  |  |  |  |  |
| Max. head                                       | 70 m      |  |  |  |  |  |  |  |
| Air Inlet                                       | 1/2" BSP  |  |  |  |  |  |  |  |
| Suction Lift                                    | 6 m       |  |  |  |  |  |  |  |
| Max. Solids                                     | 7,5 mm    |  |  |  |  |  |  |  |
| Max. viscosity (positive suction)               | 15.000 cP |  |  |  |  |  |  |  |
| Pump Materials                                  |           |  |  |  |  |  |  |  |
| WR - Polypropylene + glass fibre (GFR-PP)       |           |  |  |  |  |  |  |  |
| FC - Polyvinylidene fluoride + carbon fibre (Cf | F-PVDF)   |  |  |  |  |  |  |  |
| DF - Polyvinylidene fluoride (PVDF)             |           |  |  |  |  |  |  |  |
| AL - Aluminum                                   |           |  |  |  |  |  |  |  |
| SS - SUS 316                                    |           |  |  |  |  |  |  |  |


# DDA 125 (11/4")



|                                             | table 17      |  |  |  |  |  |  |  |  |
|---------------------------------------------|---------------|--|--|--|--|--|--|--|--|
| Technical Data                              |               |  |  |  |  |  |  |  |  |
| Max. capacity                               | 250 l/min     |  |  |  |  |  |  |  |  |
| Max. head                                   | 70 m          |  |  |  |  |  |  |  |  |
| Air Inlet                                   | 1/2" BSP      |  |  |  |  |  |  |  |  |
| Suction Lift                                | 6 m           |  |  |  |  |  |  |  |  |
| Max. Solids                                 | 7,5 mm        |  |  |  |  |  |  |  |  |
| Max. viscosity (positive suction)           | 15.000 cP     |  |  |  |  |  |  |  |  |
| Pump Materials                              |               |  |  |  |  |  |  |  |  |
| WR - Polypropylene + glass fibre (GFR-PP)   |               |  |  |  |  |  |  |  |  |
| FC - Polyvinylidene fluoride + carbon fibre | (CFF-PVDF)    |  |  |  |  |  |  |  |  |
| DF - Polyvinylidene fluoride (PVDF)         |               |  |  |  |  |  |  |  |  |
| AL - Aluminum                               | AL - Aluminum |  |  |  |  |  |  |  |  |
| SS - SUS 316                                |               |  |  |  |  |  |  |  |  |







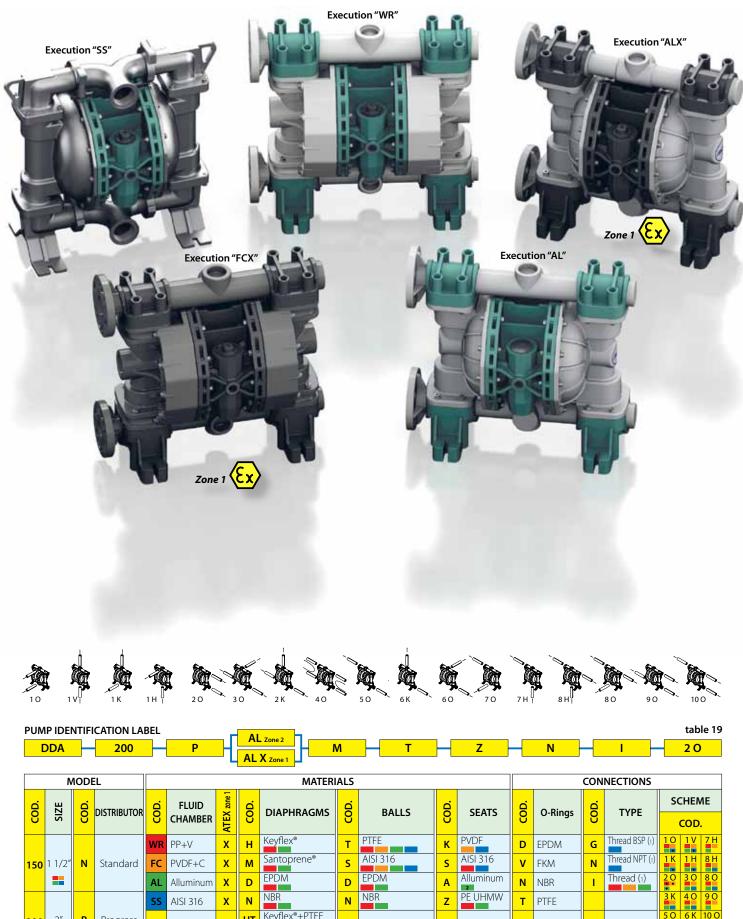

DIMENSIONS

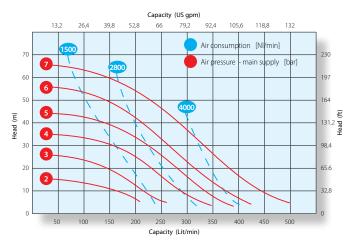
table 18

|             |                          |          |          |           |          |         | ·      | able to |  |  |
|-------------|--------------------------|----------|----------|-----------|----------|---------|--------|---------|--|--|
|             |                          | Thermo   | oplastic |           | Metallic |         |        |         |  |  |
|             | V                        | /R       | FC ·     | DF        | A        | L       | SS     |         |  |  |
| [mm]        | 100                      | 125      | 100      | 125       | 100      | 125     | 100    | 125     |  |  |
| Α           | 3                        | 70       | 37       | 70        | 3        | 70      | 3.     | 59      |  |  |
| В           | 2                        | 22       | 22       | 22        | 2        | 22      | 2      | 22      |  |  |
| C           | 3                        | 65       | 36       | 55        | 3        | 70      | 34     | 48      |  |  |
| D           | 1                        | 55       | 1:       | 55        | 1:       | 55      | 129    |         |  |  |
| E           | 2                        | 31       | 23       | 31        | 2        | 31      | 254    |         |  |  |
| н           | 2                        | 92       | 29       | 92        | 29       | 92      | 272    |         |  |  |
| S           |                          | 9        |          | 9         | (        | 9       | 9      |         |  |  |
| Т           | 3                        | 39       | 3        | 9         | 3        | 9       | 4      | 6       |  |  |
| Weight [kg] | 1                        | 5        | 1        | 6         | 1        | 6       | 20     |         |  |  |
| Connections |                          |          |          | Threa     | nds (1)  |         |        |         |  |  |
| DnA = DnM   | DnA = DnM 1" 1 1/4" 1" 1 |          | 1 1/4″   | 1″        | 1 1/4″   | 1″      | 1 1/4″ |         |  |  |
| (1) ISC     | -ANSI fla                | inged co | onnectio | ons avail | able on  | request |        |         |  |  |

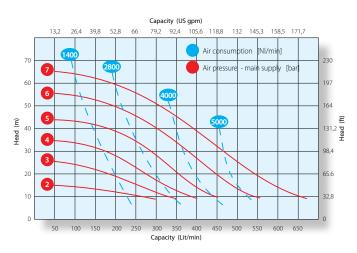
#### table 16

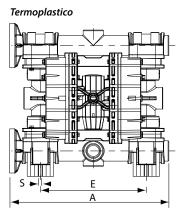
## DDA 150 - 200 11/2" - 2"

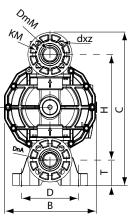


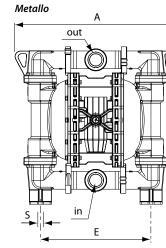

Zone 2

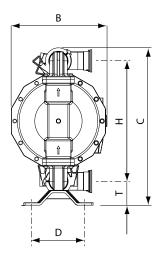
|   |    |        |   |          |    |           | 4 |    |                  |   |          |   |           |   |      |   |                |     |   |
|---|----|--------|---|----------|----|-----------|---|----|------------------|---|----------|---|-----------|---|------|---|----------------|-----|---|
|   |    |        |   |          | WR | PP+V      | Х | н  | Keyflex®         | Т | PTFE     | К | PVDF      | D | EPDM | G | Thread BSP (1) | 10  |   |
| 1 | 50 | 1 1/2″ | Ν | Standard | FC | PVDF+C    | Х | м  | Santoprene®      | S | AISI 316 | S | AISI 316  | v | FKM  | Ν | Thread NPT (1) | 1 K | 1 |
|   |    |        |   |          | AL | Alluminum | Х | D  | EPDM             | D | EPDM     | Α | Alluminum | N | NBR  | Т | Thread (1)     | 20  | 3 |
|   |    |        |   |          | SS | AISI 316  | Х | N  | NBR              | N | NBR      | Z | PE UHMW   | т | PTFE |   |                | 3 K | 4 |
| 2 | 00 | 2″     | Р | Progress |    |           |   | нт | Keyflex®+PTFE    |   |          |   |           |   |      |   |                | 50  | 6 |
|   |    |        |   |          |    |           |   | мт | Santoprene®+PTFE |   |          |   |           |   |      |   |                | 60  | 7 |


Only ATEX Zone 2 - (1) Available on request - Standard connections scheme


ASTRA - AODD Pumps Range


# DDA 150 (11/2")\_





# DDA 200 (2")











| Technical Data                                         |           |  |  |  |  |  |  |  |
|--------------------------------------------------------|-----------|--|--|--|--|--|--|--|
| Max. capacity                                          | 500 l/min |  |  |  |  |  |  |  |
| Max. head                                              | 70 m      |  |  |  |  |  |  |  |
| Air Inlet                                              | 3/4" BSP  |  |  |  |  |  |  |  |
| Suction Lift                                           | 6 m       |  |  |  |  |  |  |  |
| Max. Solids                                            | 8,5 mm    |  |  |  |  |  |  |  |
| Max. viscosity (positive suction)                      | 40.000 cP |  |  |  |  |  |  |  |
| Pump Materials                                         |           |  |  |  |  |  |  |  |
| WR - Polypropylene + glass fibre (GFR-PP)              |           |  |  |  |  |  |  |  |
| FC - Polyvinylidene fluoride + carbon fibre (CFF-PVDF) |           |  |  |  |  |  |  |  |
| AL - Aluminum                                          |           |  |  |  |  |  |  |  |
| SS - SUS 316                                           |           |  |  |  |  |  |  |  |

#### table 21

| Technical Data                                |           |  |  |  |  |  |  |  |  |
|-----------------------------------------------|-----------|--|--|--|--|--|--|--|--|
| Max. capacity                                 | 680 l/min |  |  |  |  |  |  |  |  |
| Max. head                                     | 70 m      |  |  |  |  |  |  |  |  |
| Air Inlet                                     | 3/4" BSP  |  |  |  |  |  |  |  |  |
| Suction Lift                                  | 6 m       |  |  |  |  |  |  |  |  |
| Max. Solids                                   | 8,5 mm    |  |  |  |  |  |  |  |  |
| Max. viscosity (positive suction)             | 50.000 cP |  |  |  |  |  |  |  |  |
| Pump Materials                                |           |  |  |  |  |  |  |  |  |
| WR - Polypropylene + glass fibre (GFR-PP)     |           |  |  |  |  |  |  |  |  |
| FC - Polyvinylidene fluoride + carbon fibre ( | CFF-PVDF) |  |  |  |  |  |  |  |  |
| AL - Aluminum                                 |           |  |  |  |  |  |  |  |  |
| SS - SUS 316                                  |           |  |  |  |  |  |  |  |  |

#### DIMENSIONS

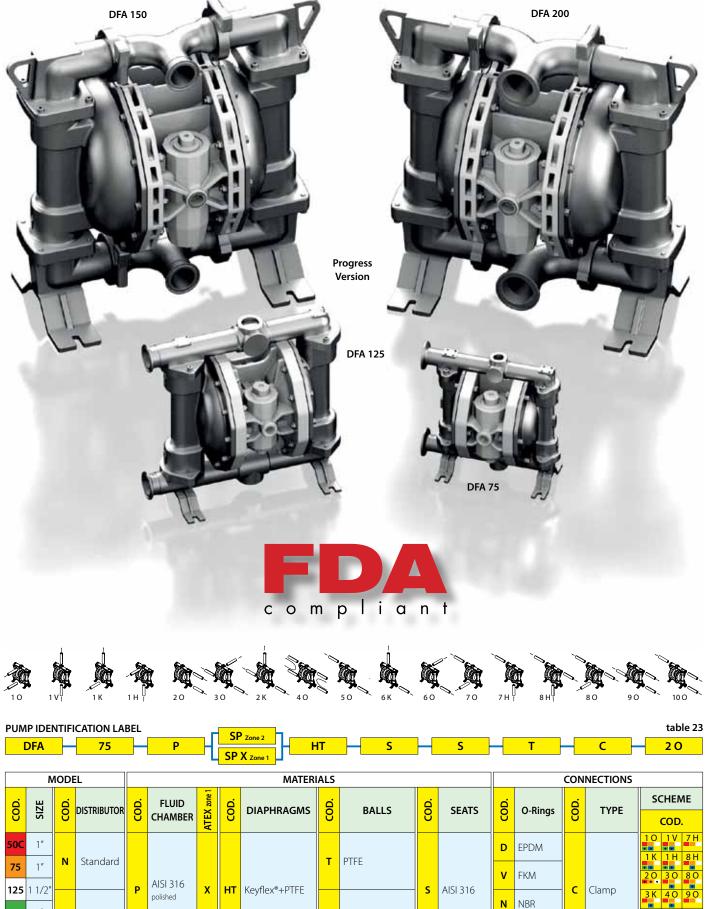
#### table 22

|            |            |         | Thermo     | oplastic  |           |        | Met      | allic  |              |   |  |
|------------|------------|---------|------------|-----------|-----------|--------|----------|--------|--------------|---|--|
|            |            | W       | WR FC - DF |           |           | A      | L        | SS     |              |   |  |
| [m         | m]         | 150     | 200        | 150       | 200       | 150    | 200      | 150    | 200          |   |  |
| ŀ          | 4          | 59      | 95         | 59        | 95        | 59     | 95       | 582    |              |   |  |
| E          | 3          | 34      | 10         | 34        | 10        | 34     | 15       | 34     | ŀ5           |   |  |
| (          | 2          | 565     | 572        | 565       | 572       | 568    | 572      | 56     | 57           |   |  |
| [          | )          | 2       | 3          | 2         | 3         | 2      | 13       | 20     | )3           |   |  |
| E          |            | 39      | 96         | 36        | 59        | 39     | 96       | 39     | 9            |   |  |
| ŀ          | 4          | 39      | 94         | 39        | 94        | 39     | 94       | 434    |              |   |  |
| 9          | 5          | 12      | 2,5        | 12        | 2,5       | 12     | 2,5      | 12,5   |              |   |  |
| ٦          | Г          | 9       | 5          | 9         | 5         | 9      | 5        | 86     |              |   |  |
| Weigh      | nt [kg]    | 3       | 0          | 3         | 5         | 35     | 36       | 58     | 60           |   |  |
| Conne      | ections    |         |            | Flang     | ed (1)    |        |          | Thread | Threaded (2) |   |  |
| DnA =      | DnM        | 1 1/2″  | 2″         | 1 1/2″    | 2″        | 1 1/2″ | 2″       | 1 1/2″ | 2″           |   |  |
| км         | iso        | 110     | 125        | 110       | 125       | 110    | 125      |        | ,            |   |  |
| L (VI      | ansi       | 18x4    | 18x4       | 18x4      | 18x4      | 18x4   | 18x4     | /      |              |   |  |
|            | iso        |         | iso 98     |           | 98 121    |        | 98 121   |        | 121          | , |  |
| dxz        | ansi       | 16x4    | 19x4       | 16x4      | 19x4      | 16x4   | 19x4     | /      |              |   |  |
| (1) Availa | ble thread | s conne | ections    | - (²) ava | ilable IS | SO-ANS | I flange | conne  | ctions       |   |  |



table 20

2P


 $(\mathbb{C}$ 



Zone 2

10 0

T PTFE



**S** AISI 316

• Standard connections scheme

Ρ

Progress

**150** 2"

200 2 1/2'

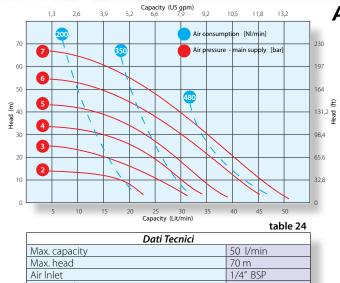
## DFA 75 - 125 - 150 - 200 1" - 11/2" - 2" - 21/2"



ASTRAFOOD "DFA" serie thanks to their characteristics and design can be applied for the transfer of fluids deployed in industries as food, the cosmetics, pharmaceuticals, or chemical additives, beverages, dairy, biotechnologies, medical appliances, paint and in all those applications were a quick release clam connection is required or appreciated. Usually are used to transfer or to remove the products from the mixing contains or storage basins or to pack them in bottles or similar containers.

The air operated double diaphragm pumps ASTRAFOOD are constructed with materials compliant to FDA regulation, wet parts of electro polished SUS 316 with surface finish to 125 Ra (average 2,7  $\mu$ m) (centre line average height 2,7  $\mu$ m) and PTFE, both certified for food applications.

All ASTRAFOOD pumps comply to ATEX, Zona 2, regulation and are adequate to operate in areas with atmosphere potentially explosive and, with the variant of the conductive executions can operate also in areas classified as ATEX Zone 1.


These pumps are capable to pump fluids with very high viscosity and temperature up to 95°C.

All other constructive and functional characteristics are equal to those of the ASTRA pumps described at page 9 and 10 of this catalogue.

ASTRAFOOD are available in the **N**ormal or **P**rogress version with the air distributor equipped with the original "Performance regulation valve"

Zone 2 (Ex)

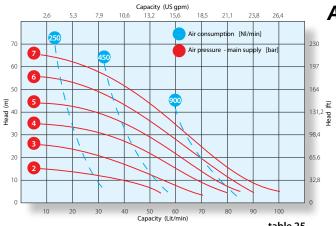
# 18 ARCAL ASTRA - AODD Pumps Range



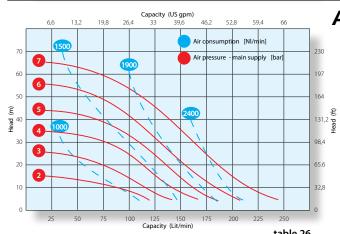
<u>5 m</u> 3 mm

6 Kg 10.000 cP

Suction Lift Max. Solids


Max. viscosity (positive suction)

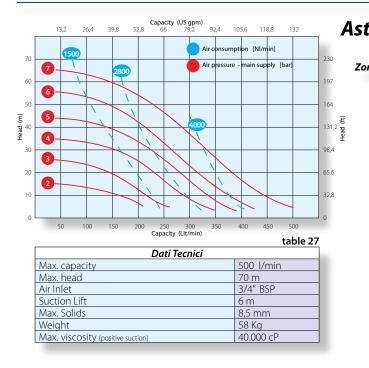
Weight


Astrafood DFA 50C (1")

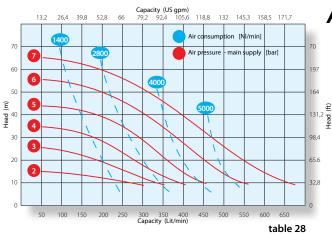


Astrafood DFA 75 (1")




|                                   | table 25  |  |  |  |  |  |  |  |  |
|-----------------------------------|-----------|--|--|--|--|--|--|--|--|
| Dati Tecnici                      |           |  |  |  |  |  |  |  |  |
| Max. capacity                     | 100 l/min |  |  |  |  |  |  |  |  |
| Max. head                         | 70 m      |  |  |  |  |  |  |  |  |
| Air Inlet                         | 1/2" BSP  |  |  |  |  |  |  |  |  |
| Suction Lift                      | 6 m       |  |  |  |  |  |  |  |  |
| Max. Solids                       | 3,5 mm    |  |  |  |  |  |  |  |  |
| Weight                            | 9 Kg      |  |  |  |  |  |  |  |  |
| Max. viscosity (positive suction) | 10.000 cP |  |  |  |  |  |  |  |  |

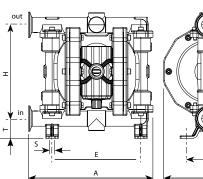


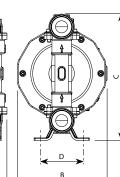


|                                   | Lable 20  |  |  |  |  |
|-----------------------------------|-----------|--|--|--|--|
| Dati Tecnici                      |           |  |  |  |  |
| Max. capacity                     | 250 l/min |  |  |  |  |
| Max. head                         | 70 m      |  |  |  |  |
| Air Inlet                         | 1/2" BSP  |  |  |  |  |
| Suction Lift                      | 6 m       |  |  |  |  |
| Max. Solids                       | 7,5 mm    |  |  |  |  |
| Weight                            | 20 Kg     |  |  |  |  |
| Max. viscosity (positive suction) | 15.000 cP |  |  |  |  |
|                                   |           |  |  |  |  |







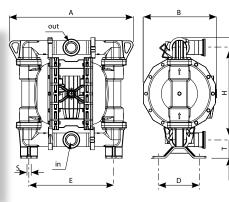



| Dati Tecnici                      |           |  |  |  |
|-----------------------------------|-----------|--|--|--|
| Max. capacity                     | 680 l/min |  |  |  |
| Max. head                         | 70 m      |  |  |  |
| Air Inlet                         | 3/4" BSP  |  |  |  |
| Suction Lift                      | 6 m       |  |  |  |
| Max. Solids                       | 8,5 mm    |  |  |  |
| Weight                            | 60 Kg     |  |  |  |
| Max. viscosity (positive suction) | 50.000 cP |  |  |  |

Zone 2 Ex








DIMENSIONS

|                                               | SP     |        |        |        |        |  |  |  |
|-----------------------------------------------|--------|--------|--------|--------|--------|--|--|--|
| [mm]                                          | 50C    | 75     | 125    | 150    | 200    |  |  |  |
| Α                                             | 225    | 247    | 359    | 582    | 582    |  |  |  |
| В                                             | 156    | 177    | 222    | 345    | 345    |  |  |  |
| С                                             | 230    | 249    | 348    | 567    | 567    |  |  |  |
| D                                             | 110    | 89     | 129    | 203    | 203    |  |  |  |
| E                                             | 110    | 176    | 254    | 399    | 399    |  |  |  |
| н                                             | 183    | 185    | 272    | 434    | 434    |  |  |  |
| S                                             | 7      | 9      | 9      | 12.5   | 12.5   |  |  |  |
| Т                                             | 25,5   | 40     | 40     | 40     | 46     |  |  |  |
| Connectiuons                                  | Clamp* | Clamp* | Clamp* | Clamp* | Clamp* |  |  |  |
| in / out                                      | 1″     | 1″     | 1 1/2″ | 2″     | 2 1/2" |  |  |  |
| (*) Threaded connections available on request |        |        |        |        |        |  |  |  |

table 29



# SELENE - pneumatic pulsation dampeners \_

#### CHARACTERISTICS AND ADVANTAGES

The range of **SELENE** flow pulsation dampeners exploits a new technology which minimises the pulsation typical of the flow delivered by air operated double diaphragm pumps. All volumetric pumps as dosing pumps with double diaphragm or plumber piston generate pulsations from their pumping alternative motion and hydraulic shocks potentially capable to damage the complete device.

The pulsation dampeners Selene are mounted on the line where the liquid is delivered and reduce drastically pulsation, liquid hammers and vibration of the pump.

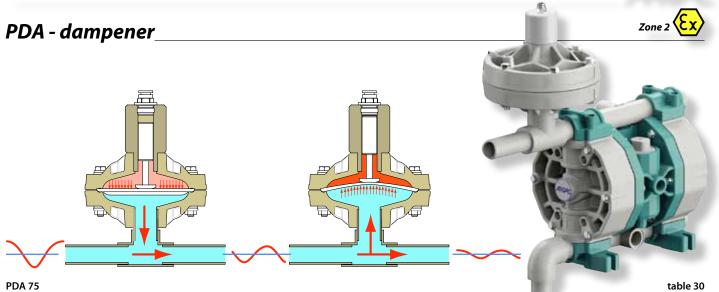
The dampener needs its source of pressurised air supply. Its use is advised when the hydraulic circuit the pump suffers peaks of pressure, thermal expansions, sudden starts add stops or fast valve shut offs of delivery valves.

SELENE dampeners are "active" and do no need tuning or pre loading for they are self adaptive; their can dampen the amplitude of the pulsations up to 90% of their max. amplitude.

Dampener require a minimal maintenance and are available in the same construction materials of the liquid chambers and diaphragms for thermoplastic pumps and in stainless steel SUS 316 for the metallic versions.

For aluminum made pumps the SELENE dampeners are constructed in PPS (Ryton®).

SELENE dampeners are available in ATEX compliant version and are adequate to operate in areas at risk of explosion areas classified as Atex Zone 1.


#### The major advantages of the Selene dampener are:

Zone 1

Zone 2

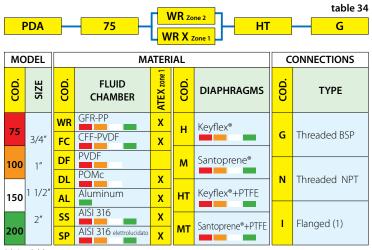
- Stabilizes the flow generated by volumetric pumps
- Reduces significantly the vibrations
- Reduces liquid hammers
- Prevents potentially damaging pressure peaks
- Reduces significantly the noise of the system
- Protects the appliances connected along the same hydraulic line
- Reduces the maintenance cost of the plant
- Increases global productivity
- Is adequate to operate with liquids viscous or laden with solids.

Ryton® is a trade mark registered by Chevron Phillips



| Technical Data   |                |   | Materials                                              | Applicability |
|------------------|----------------|---|--------------------------------------------------------|---------------|
| Inlet / outlet   | 3/4"           |   | WR - Polypropylene + glass fibre (GFR-PP)              | DDA 25R       |
| Air connection   | 3/8"           | ] | FC - Polyvinylidene fluoride + carbon fibre (CFF-PVDF) | DDA 38R       |
| Air exhaust plug | 1/4″           | ] | DF - Polyvinylidene fluoride (PVDF)                    | DDA 50R       |
| Max pressure     | 7 bar          | 1 | DL - Polyoxymethylene (POMc)                           |               |
| Dimension        | ø 120 x 125 mm | 1 | SS - AISI 316                                          |               |
|                  |                |   | SP - AISI 316 polished                                 |               |

#### PDA 100


| PDA 100          |                |   |                                                        | table 31      |
|------------------|----------------|---|--------------------------------------------------------|---------------|
| Techn            | nical Data     |   | Materials                                              | Applicability |
| Inlet / outlet   | 1″             | ] | WR - Polypropylene + glass fibre (GFR-PP)              | DDA 50C       |
| Air connection   | 1/2″           |   | FC - Polyvinylidene fluoride + carbon fibre (CFF-PVDF) | DDA 50        |
| Air exhaust plug | 1/4″           | ] | DF - Polyvinylidene fluoride (PVDF)                    | DDA 75        |
| Max pressure     | 7 bar          |   | DL - Polyoxymethylene (POMc)                           | DDA 100C      |
| Dimension        | ø 182 x 175 mm | ] | SS - AISI 316                                          |               |
|                  |                | ] | SP - AISI 316 polished                                 |               |

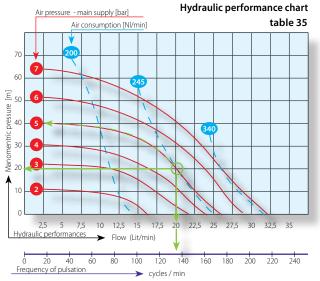
#### PDA 150

| PDA 150          |                |                                                        | table 32      |
|------------------|----------------|--------------------------------------------------------|---------------|
| Technie          | cal Data       | Materials                                              | Applicability |
| Inlet / outlet   | 1 1/2"         | WR - Polypropylene + glass fibre (GFR-PP)              | DDA 100       |
| Air connection   | 3/8"           | FC - Polyvinylidene fluoride + carbon fibre (CFF-PVDF) | DDA 125       |
| Air exhaust plug | 1/4"           | DF - Polyvinylidene fluoride (PVDF)                    |               |
| Max pressure     | 7 bar          | DL - Polyoxymethylene (POMc)                           |               |
| Dimension        | ø 231 x 252 mm | SS - AISI 316                                          |               |
|                  |                | SP - AISI 316 elettrolucidato                          |               |

#### PDA 200

| Technical Data   |                | Materials                                              | Applicability |  |
|------------------|----------------|--------------------------------------------------------|---------------|--|
| Inlet / outlet   | 2″             | WR - Polypropylene + glass fibre (GFR-PP)              | DDA 150       |  |
| Air connection   | 1/2″           | FC - Polyvinylidene fluoride + carbon fibre (CFF-PVDF) | DDA 200       |  |
| Air exhaust plug | 1/2"           | AL - Aluminum                                          |               |  |
| Max pressure     | 7 bar          | SS - AISI 316                                          |               |  |
| Dimension        | ø 350 x 405 mm | SP - AISI 316 polished                                 |               |  |
|                  |                |                                                        |               |  |




4D/C

ASTRA - AODD Pumps Range

21

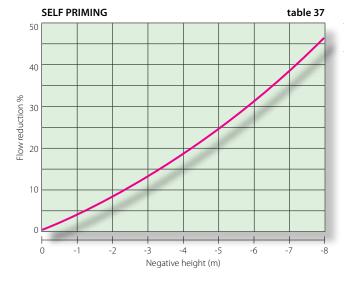
table 33

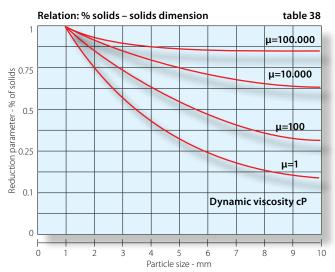
(1) Available on request



## Instructions for the choice of the Astra pumps

Duty point – example: Flow 20 l/min - Manomentric pressure 20 m.


- Air pressure main supply: 5 bar
- Air consumption: 245 NI/min


22

• Frequency of cycles: 135 cicli/min

| Air supply table 36 |                                       |                                               |  |  |  |
|---------------------|---------------------------------------|-----------------------------------------------|--|--|--|
| Air<br>consumption  | Pump intake<br>air pipe<br>external Ø | Air compressor<br>adsorbed power<br>(approx.) |  |  |  |
| NI / min            | mm                                    | HP                                            |  |  |  |
| 50                  | 6                                     | 0.5                                           |  |  |  |
| 100                 | 6                                     | 1                                             |  |  |  |
| 200                 | 6                                     | 2                                             |  |  |  |
| 250                 | 8                                     | 2.5                                           |  |  |  |
| 350                 | 8                                     | 3.5                                           |  |  |  |
| 450                 | 8                                     | 4.5                                           |  |  |  |
| 550                 | 8                                     | 5.5                                           |  |  |  |
| 850                 | 10                                    | 8.5                                           |  |  |  |
| 1000                | 10                                    | 10                                            |  |  |  |
| 1500                | 12                                    | 15                                            |  |  |  |
| 2000                | 12                                    | 20                                            |  |  |  |
| 3500                | 12                                    | 30                                            |  |  |  |
| 4000                | 15                                    | 40                                            |  |  |  |

The power truly adsorbed by the air compressor its appreciatively = 70% of the value indicated in the table





To lift the liquid from a negative height reduces the flow of the pump as in standard circumstances (flooded suction).

The max. negative head is a function of:

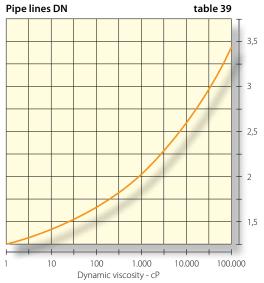
characteristics of the plant (hydraulic losses);

physical characteristics of the fluid (density, viscosity, boiling point); differential pressure exerted on the diaphragms as between the fluid side of the priming diaphragm and the air side of opposite diaphragm.

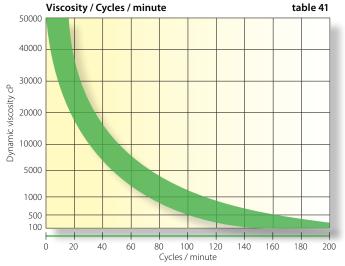
The admissible dimension of solids in suspension depends by:

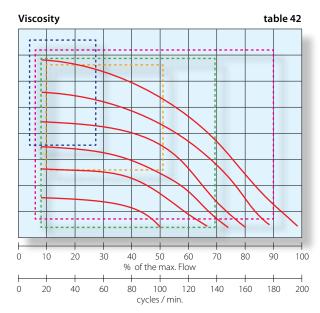
- DN of the pump (max. valve passage),

- Viscosity of the fluid.


Dimension limits the admissible % concentration of solids in suspension.

Solid particles of larger dimension reduce significantly the max admissible % of solids in suspension if the liquid is low viscosity but do not reduce it much if the liquid is of high viscosity.


23


# **Viscous fluids**

If the fluid is viscous increase the section (diameter) of the pipe lines by the multiply coefficient reported.



Multiply coefficient for pipe line diameter referred to a non viscous fluid and constant hydraulic losses.





| Food indust        | ry    | Cosmetic Pharmaceutical<br>industry Various Industries |      |              | stries |  |
|--------------------|-------|--------------------------------------------------------|------|--------------|--------|--|
| Product            | сP    | Product                                                | сP   | Product      | сP     |  |
| Butter             | 50000 | Yoothpaste                                             | 5000 | Oil SAE70    | 18000  |  |
| Whipped acid cream | 13000 | Gel                                                    | 2000 | Pater pul    | 15000  |  |
| Mayonnaise         | 6000  | Glycerine                                              | 1400 | in water     | 15000  |  |
|                    | 1500  | Shampoo                                                | 250  | Barbotine    | 2000   |  |
| Honey              |       |                                                        |      | Grease lubr. | 2000   |  |
| Marmalade          | <1000 |                                                        |      | Mineral oil  | 800    |  |
| Tomato sauce       | 180   |                                                        |      | Oil SAE30    | 350    |  |
| Yogurt             | 100   |                                                        |      | Varnish      | 300    |  |
| Olive Oil          | 100   |                                                        |      |              |        |  |

Viscosity is an important parameter to select the right pump for the application. Viscosity is measured in Centipoise - cP

As a general indication assume that;

the more viscous the liquid is, the lower is the n° of cycles per minute it has to be pumped at:

(cycles per minute = complete cycle of a single diaphragm).

Viscosity of moving fluids can be constant or variable: Fluids with variable viscosity will be pumped within the limits of flow and head inscribed by border line relevant to the specific viscosity characteristic as shown in the attached diagram chart.

Not viscous fluids (1 < μ < 10)</li>

(water, acid solutions, basic solutions, organic solvents).

• Fluids with constant viscosity

(sulphuric acid, sodium hydroxide, oil, acetyl ethanolamine, glycerine, toothpaste, mayonnaise, margarine, slurries).

- Fluids with increasing viscosity (corn starch, siliconic oils, row sugar, colloidal dispersion, whipped cream).
- Fluids with decreasing viscosity (paper pulp in water, acrylic paint, latex, blood, ketchup,

jellified enamels, jellified hydro carbons, lip gloss).

